- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources2
- Resource Type
-
0000000002000000
- More
- Availability
-
20
- Author / Contributor
- Filter by Author / Creator
-
-
Roederer, I_U (2)
-
Adamów, M. (1)
-
Bell, E_F (1)
-
Bom, C_R (1)
-
Carballo-Bello, J_A (1)
-
Carlin, J_L (1)
-
Cerny, W. (1)
-
Chaturvedi, A. (1)
-
Chiti, A. (1)
-
Choi, Y. (1)
-
DELVE_Collaboration (1)
-
Den_Hartog, E_A (1)
-
Doliva-Dolinsky, A. (1)
-
Drlica-Wagner, A. (1)
-
Ferguson, P_S (1)
-
Geha, M. (1)
-
Gnedin, O_Y (1)
-
James, D_J (1)
-
Ji, A_P (1)
-
Li, T_S (1)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract We report new branching fraction measurements for 224 ultraviolet and optical transitions of Tmii. These transitions range in wavelength (wavenumber) from 2350 to 6417 Å (42,532–15,579 cm−1) and originate in 13 odd-parity and 24 even-parity upper levels. Thirty-five of the 37 levels, accounting for 213 of the 224 transitions, are studied for the first time. Branching fractions are determined for two levels studied previously for comparison to earlier results. The levels studied for the first time are high lying, ranging in energy from 35,753 to 54,989 cm−1. The branching fractions are determined from emission spectra from two different high-resolution spectrometers. These are combined with radiative lifetimes reported in an earlier study to produce a set of transition probabilities and log(gf) values with accuracy ranging from 5% to 30%. Comparison is made to experimental and theoretical transition probabilities from the literature where such data exist. These new log(gf) values are used to derive an abundance from one previously unused Tmiiline in the UV spectrum of ther-process-enhanced metal-poor star HD 222925, and this abundance is consistent with previous determinations based on other Tmiilines.more » « less
-
Cerny, W.; Chiti, A.; Geha, M.; Mutlu-Pakdil, B.; Drlica-Wagner, A.; Tan, C_Y; Adamów, M.; Pace, A_B; Simon, J_D; Sand, D_J; et al (, The Astrophysical Journal)Abstract We present the discovery of Aquarius III, an ultra-faint Milky Way satellite galaxy identified in the second data release of the DECam Local Volume Exploration survey. Based on deeper follow-up imaging with DECam, we find that Aquarius III is a low-luminosity ( ), extended ( pc) stellar system located in the outer halo (D⊙= 85 ± 4 kpc). From medium-resolution Keck/DEIMOS spectroscopy, we identify 11 member stars and measure a mean heliocentric radial velocity of for the system and place an upper limit ofσv< 3.5 km s−1(σv< 1.6 km s−1) on its velocity dispersion at the 95% (68%) credible level. Based on calcium-triplet metallicities of the six brightest red giant members, we find that Aquarius III is very metal-poor ([Fe/H]= − 2.61 ± 0.21) with a statistically significant metallicity spread ( dex). We interpret this metallicity spread as strong evidence that the system is a dwarf galaxy as opposed to a star cluster. Combining our velocity measurement with Gaia proper motions, we find that Aquarius III is currently situated near its orbital pericenter in the outer halo (rperi= 78 ± 7 kpc) and that it is plausibly on first infall onto the Milky Way. This orbital history likely precludes significant tidal disruption from the Galactic disk, notably unlike other satellites with comparably low velocity dispersion limits in the literature. Thus, if further velocity measurements confirm that its velocity dispersion is truly belowσv≲ 2 km s−1, Aquarius III may serve as a useful laboratory for probing galaxy formation physics in low-mass halos.more » « less
An official website of the United States government
